Columbia and Snake Mainstem Temperature Assessment, TMDL, and Potential Actions by Dams

Ben Cope December 14, 2006

Outline

Past Assessments and Draft TMDL

- RBM10 Model
- Assessment and Draft TMDL
- Implementation Options for Dams

General Path Forward

Simplification

RBM 10 Model

RBM10

- Developed by EPA Region 10 (Yearsley)
- 1D, Dynamic Temperature Model
 - estimates cross-sectional avg temperature
 - Model segments are approx. 1 mile long
- Peer Reviewed
- Used by Columbia River Tech Management Team (TMT) for Dworshak Planning for several years

ONE-DIMENSIONAL ENERGY BUDGET MODEL

Figure 3A: Clearwater River at Mouth - 1992

Simulated Temperature of Columbia River for Impounded and Unimpounded System at River Mile 546 (site of Chief Joseph Dam)

Assessment and TMDL

Tributaries

Tributary	Average Flow (CFS)	Columbia Average Flow (CFS)	∜ T (°C) to raise Columbia Temperature	
			0.5 °C	0.14°C
Spokane River	7,812	~ 100,000	7.0	1.9
Okanagan River	3,145	~106,255	17.0	4.9
Yakima River	3,569	~118,400	17.0	4.8
Snake River	55,090	~118,400	1.6	0.44
Deschutes	5,839	~185,161	16.0	4.6
Willamette	34,205	~191,000	3.2	0.92
		Snake Average Flow (CFS)	∜ T (°C) to raise Snake Temperature	
			0.5 °C	0.14°C
Salmon	11240	~23560	1.5	0.43
Grande Ronde	3101	~34800	6.0	1.7
Clearwater	15430	~37901	1.5	0.48

Impact of Point Sources on Mainstem Temperatures

Simulated Increases in Temperature at River Mile 42 in the Columbia River due to the Existing Point Sources

Assessment Conclusions (from model reports, Problem Assessment, etc.)

- Dams cause temperature shift that exceeds standards
 - Grand Coulee, Lower Snake Dams, John Day biggest impact
- Tributaries minor effect on the mainstem temperature
 - Exceptions
 - Snake effect on Columbia
 - Salmon and Clearwater effect on Snake
- Point sources < 0.3 deg C cumulative impact</p>
- Climate change may account for slight warming

TMDL

WQ Standards Patchwork

 Variable criteria, allowable increases abv natural condition, & criteria timeframes by location

Table S-1: Summary of Water Quality Standards that Apply to the Columbia and Snake Rivers

Columbia River Reach	Criterion	Natural Temp < Criterion	Natural Temp > Criterion
Canadian Border to Grand Coulee Dam	16 °C DM	Natural + 23/(T+5)	Natural + 0.3 °C
Grand Coulee Dam to Chief Joseph Dam	16 °C DM	Natural + 23/(T+5)	Natural + 0.3 °C
Chief Joseph Dam to Priest Rapids Dam	18 °C DM	Natural + 28/(T+7)	Natural + 0.3 °C
Priest Rapids Dam to Oregon Border	20 °C DM	Natural + 34/(T+9)	Natural + 0.3 °C
Oregon Border to mouth	12.8/20 °C DM	Natural + 1.1 °C	Natural + 0.14°C
Snake Ri ver Reach	Criterion	Natural Temp < Criterion	Natural Temp > Criterion
Salmon River to OR/WA Border	12.8/17.8 °C 7DADM	Up to Criterion	Natural + 0.14 °C
OR/WA Border to ID/WA Border	20 °C DM	Natural + 1.1 °C	Natural + 0.3 °C
ID/WA Border to Mouth	20 °C DM	Natural + 34/(T+9)	Natural + 0.3 °C

T =the background temperature as measured at a point or points unaffected by the discharge and representative of the highest ambient water temperature in the vicinity of the discharge.

DM = daily maximum temperature.

7DADM = seven day average of the daily maximum temperatures.

TMDL

21 Target Sites

- 15 sites at dam tailraces
- 5 sites below Bonneville Dam
- 1 site at Lewiston

Natural Conditions

- Dealing with a portion of the Columbia Basin
 - We assume current temperatures and inflows at boundaries to mainstem rivers
 - Snake River at Brownlee tailrace
 - No Dworshak temp control or flow augmentation
 - Columbia River at Canadian border
 - All tributaries at existing conditions
 - "Site Potential" Temperature
 - estimated temperature within the project area in the absence of sources in the project area.

TMDL

- Sources with allocations
 - 15 Dams
 - 244 Point Sources
 - 11 Large individual permits w/individual allocations
 - 97 Smaller individual permits w/group allocations
 - 136 General permittees w/group allocations
 - 20 Tributaries
- Sources considered minimal
 - Shade, hyporheic alteration, climate change
 - Small tributaries not included in the model

Critical Location

Critical Location

- River Mile 42
- Cumulative impacts of all upstream dams, point sources
- Standard allowable changes to nat'l condition
 - < 0.3 deg C change in summer</p>
 - <1.1 deg C change in late fall/winter</p>

Seasonality

- July 1 October 31
- Nov 1 Feb 5

 Existing temperatures do not exceed site potential temperatures from Feb 6-July 1.

Most stringent standard changes on Nov 1

Bottom Line

- Point Sources allocated existing loads
- Tributaries allocated existing loads
- Dams
 - 5 smallest impact dams allocated existing impact (Wells, Rocky Reach, Rock Island, Priest Rapids, The Dalles)
 - Remaining dams allocated near-zero increases to natural conditions

Implementation Options for Dams

Potential Changes in Dam Operations

- Selective Withdrawal
 - Dworshak full gate structure in operation
 - Brownlee no structure, EPA pushing for one
 - Gr. Coulee no structure, potential switch in powerhouse usage
- Flow Augmentation
 - Dworshak current large summer augmentation
 - Brownlee current modest summer augmentation
 - Gr. Coulee no augmentation
- Local Dam Design and Operations
 - ladders, forebay bubblers, Grand Coulee Columbia project withdrawal depth

Dworshak Operations

Brownlee Potential Operations

Grand Coulee Potential Operations

- Selective withdrawal very expensive
 - benefit probably modest (modest stratification)
- Powerhouses draw from different depths
 - Switch flow from Powerhouse 3 to 1 & 2
 - Notably colder expected releases (1-2 deg C)
- No reservoir model of Grand Coulee
 - hampers analysis of management options
 - example change to Banks Lake withdrawal depth?
 - example alternative flood control operations?

Path Forward

Strawman

- Identify/Resolve Outstanding Policy Issues
- Model Review Meeting
- Quantify Improvement Needed to Meet WQS
 - Based on 1970-2000 model simulations (no update)
 - Develop basic TMDL info (more below)
- Corps/Bureau Lead Implementation Analysis
- Start Joint TMDL and UAA Product

Simplification

Draft TMDL Difficulties

- Allocating to individual dams
- Simulating the TMDL compliance scenario
- Determining if small dams are OK
- High modeling cost and complexity
 - Hundreds of model runs 21 TMDL scenarios
 - Lots of data to handle 30 years, daily values
 - Conundrums building the compliant scenario
 - assume free-flowing river and add impact or assume impounded river and subtract impact?
 - put the dam into nat'l river or take it out of impounded river to estimate its impact?
 - put point sources into nat'l river or impounded river to estimate impact?

Individualizing

-adds a model configuration for each dam

- Temp reduction (delta) assigned to individual dam assumes upstream achieves standard
- we do not list "current condition" since it is not relevant to individual allocations
- questionable practical use of the individual reduction values (e.g., "Reduction from what?")

Load Allocations for **Dam 1**

Month	Target Temp	Reduction
July	21.8	0.2
Aug	18.7	0.9
Sept	16.8	1.2

Load Allocations for **Dam 2**

Month	Target Temp	Reduction
July	22.3	0.2
Aug	19.2	0.4
Sept	17.3	0.4

Load Allocations for **Dam 3**

Month	Target Temp	Reduction
July	22.8	0.2
Aug	19.7	0.3
Sept	17.8	0.2

Individual Allocations Pros/Cons

Pro

- Can allocate existing impacts to small dams and get them off "the list".
- Individual dam responsibility

Con

- Very high analytical cost
- Only a custom model can do it bar too high
- Hard to explain or implement resulting allocations
 - E.g., "Temperature reduction from what?"
 - from the simulated tailrace temperature with your dam in place but no upstream dams (?)

Reduce Complexity?

Group allocations for dams

- No simulation of compliant condition
 - De-couple point source and dam allocations
 - Dams eliminate temperature shift zero allocation
 - Point sources < 0.3 deg C impact

Load Allocations for **Dam 1**

Month	Target Temp	Current Condition	Temp Reduction
July	21.8	22.0	0.2
Aug	18.7	19.6	0.9
Sept	16.8	18.0	1.2

Load Allocations for Dams 1 and 2

Month	Target Temp	Current Condition	Temp Reduction
July	22.3	22.8	0.5
Aug	19.2	20.3	1.1
Sept	17.3	18.7	1.4

Load Allocations for Dams 1, 2, and 3

Month	Target Temp	Current Condition	Temp Reduction
July	22.8	23.5	0.7
Aug	19.7	21.1	1.5
Sept	17.8	19.5	1.8

Pros/Cons

- Pro
 - Low analysis cost
 - Easy to understand and explain

- Con
 - Group responsibility for dams, not individual
 - Small impact dams are included in group allocations